

CODE IIT Madras offers

MOTORS AND CONTROLLERS

Lab Course

https://code.iitm.ac.in/

Course Fee: Rs.12,000 + GST

S.No	Name of the experiments	Description	No. of hours
1	Cut Section Analysis of AC and DC Motors	Examining and studying the internal components and structure of various motors such as DC, Stepper, BLDC, PMSM, SRM etc.,	3
2	Disassembly and Assembly of AC and DC Motors	To develop hands-on skills in safely disassembling and assembling electric motors using proper tools and techniques.	3
3	Study of three-phase DC-AC inverter	 Gain understanding of the principle of Operation of a Three-Phase DC-AC Inverter Understand modulation techniques used for controlling the inverter, such as Sinusoidal PWM (SPWM) 	2
4	Study of torque measurements using a Tandem dynamometer	 To measure the speed, torque and power output of motors To assess the dynamic torque response of the motor under test, including transient conditions To simulate various load conditions and study their impact on torque 	2
5	Control Strategy of Electric Motors (HIL approach of testing motor and drive hardware)	To develop and implement real-time control algorithms for BLDC, SR, PMSM, and Induction motors using Snetley FPGA	3
6	Simulation case studies 1. EV Powertrain 2. Motor Control	 To analyze the complete EV powertrain, including battery, motor, controller, and drivetrain under standard drive cycles. To implement motor control algorithms 	2

LEARNING **OUTCOME**

By the end of this laboratory course, learners will be able to:

- Examine and understand the internal components of various motors (DC, Stepper, BLDC, PMSM, SRM) and learn about motor structures, operating principles, and performance characteristics.
- Develop practical skills in disassembling and assembling electric motors safely. Gain experience in using proper tools and techniques for motor maintenance.
- Understand the operation principles of three-phase DC-AC inverters and learn modulation techniques, such as Sinusoidal PWM (SPWM), for controlling inverter output.
- Measure speed, torque, and power output of motors using a tandem dynamometer and assess dynamic torque responses under varying load conditions and transient behaviors.
- Design and implement real-time control algorithms for BLDC, SRM, PMSM, and Induction motors using FPGA-based hardware-in-the-loop (HIL) testing.
- Analyze the performance of EV powertrains, including motors, controllers, and batteries under standard drive cycles.

INDUSTRY **APPLICATIONS**

Skills gained in this lab are useful in:)

- Motor selection, inverter control, and powertrain simulation for efficient EV design and performance optimization.
- Hands-on experience with motor disassembly/assembly and maintenance procedures, applicable in motor manufacturing, service, and repair sectors.
- Apply knowledge of inverters and motor control in energy conversion systems, such as wind turbines, solar power systems, and grid integration.
- Expertise in motor control and torque measurement for robotics applications, improving precision and performance in automated systems.
- Contribute to the development and optimization of electric propulsion systems for trains, buses, and other forms of electric transportation.
- Leverage motor control and real-time testing skills to enhance industrial automation, including conveyor systems, manufacturing equipment, and electric machines.

- OCODE Office, 3rd floor, IC & SR Building, IIT Madras, Chennai 600 036
- © (044) 2257 5905, (044) 2257 5908, 9791474665 (Mon-Fri 9am-6pm)
- ⊠ anupama@code.iitm.ac.in, vinila@code.iitm.ac.in